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We propose a simple kinetic model for the evolution of a droplet in a cell, based on the Van der
Waals equation of state, to investigate the behavior of a mixture of liquid and vapor undergoing
adiabatic expansion in vacuum after rapid, isochoric heating. We study the evolution of the two-
phase fluid at intermediate times between the molecular and the hydrodynamic scales, focussing
on out-of-equilibrium and surface effects. We find a formula for the temperature diference between
the gas and the droplets and we check it with numerical calculations. We then use the formula
to delimit the thermalized and non-thermalized regimes of expansion. In the thermalized case, the
liquid fraction grows in a proportion that we estimate analytically, whereas, in case of too rapid
expansion, a strict limit for the evaporation of droplets is derived. The range of experimental
situations is discussed.

PACS numbers: 51.10.+y, 64.70.fm

I. INTRODUCTION

Warm Dense Matter (WDM) conditions (density 0.01
ρsolid < ρ < ρsolid and temperature 0.1eV < T < 10
eV) can be defined as the region of thermodynamic space
corresponding to the double crossover from degenerate to
non-degenerate and from weakly to strongly coupled mat-
ter [1], so that the “easy” limiting descriptions in terms
of cool plasma and hot condensed matter meet and have
to be somehow connected to each other. This problem is
drawing growing attention because of the serious theoret-
ical challenges involved, and because of the occurence of
WDM in the contexts of Inertial Fusion Energy (IFE), as-
trophysics (planet cores), and laser ablation for materials
processing, nanoparticles formation and film deposition
[2–4].

Most of these situations involve rapid heating of a ma-
terial, which means that the energy deposition (by lasers,
ions, neutrons, electrical discharges, etc.) is much faster
than its release through hydrodynamic expansion. Pres-
sures in the kbar to Mbar range are reached before giving
rise to supersonic expansion with typical outflow veloci-
ties of several km/s.

During such expansion and adiabatic cooling, it is al-
most inevitable that the material enters at some point
into the two-phase region of the phase diagram. This
happens either from below the critical point (ion heating
experiments such as GSI in Darmstadt [5, 6], or NDCX
II at LBNL [7], low fluence laser ablation, Z machines),
or from above it (IFE, high fluence laser ablation, up-
coming ion heating machines). In the first case an over-
stretched liquid fragments and evaporates into a mixture
of droplets and gas, whereas in the second case a hot su-
persaturated gas nucleates small clusters while expand-
ing. In both cases the flow becomes a plume of gas and

condensed clusters, meaning that a monophasic fluid has
undergone phase separation with the creation of surfaces
giving a non-trivial geometry to the fluid, which may a
priori affect its dynamical properties.

Recently, there has been significant progress in the ob-
servation of those two-phase flows, from the early abla-
tion and plume expansion stages in the the ps and ns
timescales [8–11] to the late µs timescale evolution in-
cluding ”post-mortem” analysis of the clusters [12, 13].

Basic questions arise when considering a two-phase
flow. First, such flow is a mixture of gas and clusters
(most often liquid, so the term ”droplet” is appropriate),
so one may ask: what is the droplets’ size and distribu-
tion, and how do they evolve during the expansion? A
second important question concerns the temperature of
the gas and drops: is there equilibrium? The answer can
determine the conditions of validity for hydrodynamic
approaches based on the Maxwell Construction or any
two-phase Equation of State (EoS) that assumes local
equilibrium.

So far, two main approaches have been used. On
one hand, Molecular Dynamics (MD) codes [14–20] com-
pute the dynamics of each particle separately, and have
given powerful insight into the processes of fragmenta-
tion, phase explosion, and the different mechanisms for
ablation, but they are inherently limited to only treat
the early times (< 1ns, [50]), and with a small number
of particles (∼ 107). On the other hand, hydrodynamic
codes [13, 21–24] can model experiments completely, but
they deal with mesoscopic fluid cells, and often rely on
crude approximations concerning the molecular and ki-
netic processes involved. Complex hydrodynamic codes
including a treatment of the kinetics of phase change pro-
cesses and surface effects in each cell are under develop-
ment [13, 25], but providing a complete and reliable de-
scription of a whole WDM experiment is still a challenge.
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Better understanding of two-phase flows should be
helpful for the preparation of experiments, including the
diagnostics, and for the interpretation of the data. In
IFE especially, the problem of debris dynamics is a cru-
cial issue due to their impact on the optics and other
components of the target chambers [25, 26].

In this paper we propose a simple model to study two-
phase flows in WDM situations. Our model was initially
conceived to predict the phenomenology of the upcoming
target heating experiments with the NDCX II machine at
LBNL where an ion beam will almost isochorically heat a
thin metallic foil to temperatures of about 1eV. However,
the model should apply to any two-phase flow.

For the EoS, we use the Van der Waals fluid model,
which allows us to build a complete set of thermodynamic
functions needed for our computation. The particle and
energy fluxes between a drop and the surrounding gas are
described with a self-consistent set of kinetic rate equa-
tions, that is original to our knowledge. The computing
cell is considered as part of a larger hydrodynamic code,
but in this paper we only consider one cell containing
one droplet. We use our model to distinguish the differ-
ent regimes of two-phase expansion: on one side, quasi or
fully-thermalized, on the other side, non-themalized. We
show that this distinction depends on the initial target
dimensions and the initial temperature. We then study
those regimes analytically and numerically.

II. BACKGROUND

A. Expanding two-phase flows. Supercritical and
subcritical cases

The model that we propose lies at a mesoscopic scale
between the molecular and hydrodynamic scales, so we
need some preliminar assumptions. Our computing cell
is considered as an elementary piece of a larger hydro-
dynamic code describing an expanding flow. The lin-
ear strain rate η characterizes the expansion of the cell
L = L0(1 + ηt), where L0 is the initial cell size. We
define the hydrodynamic timescale thydro = η−1. In the
following, we assume rapid heating (theating < thydro)
so that the energy deposition in the material is almost
isochoric. For simplicity, we will assume instantaneous
energy deposition. In Table I, we gather the most rele-
vant parameters of our model and, for some, their values
in the reference case considered throughout this paper.

To get insight into the global flow, it is interesting to
review some analytical and numerical results. The Self
Similar Rarefaction Wave (SSRW) is the solution [27] de-
scribing the 1D expansion of a perfect gas (semi-infinite
at z < 0) of adiabatic coeficient γ after instantaneous
uniform heating. In this solution the outward expanding
front travels at 2cs0/(γ − 1), which is 3cs0 for a perfect
monoatomic gas, while the inward rarefaction wave prop-

T0 initial temperature 8000K

δz initial foil thickness 3.5µm

δr beam diameter 1mm

cs0 sound speed at T0

v0 3cs0: outflow velocity 5km/s

ηz 2v0/δz : axial strain rate

ηr 2v0/δr : radial strain rate

η̃ d(V/V0)/dt : volume strain rate

thydro η−1
z : hydrodynamic time 0.37ns

t3D η−1
r : time for crossover to 3D ex-

pansion regime
100ns

R0 initial droplet radius 20nm

L0, V0 initial cell size, volume

a VdW interaction parameter

b VdW volume per particle

l0 a/b: latent heat at T = 0 per
atom

3.07eV

θ kBT/l0 : reduced temperature

nl,g particle densities

n∗
g equilibrium gas density

vl,g volumes per particle

el,g energies per particle

El,g total energies in the cell

σ surface tension

Φvap,cond evaporation, condensation fluxes

α thermalization coefficient 0.5

β condensation (sticking) coefficient 0.5

x Nl/Ntot: liquid fraction in the cell

TABLE I: Relevant parameters for the model and typical val-
ues in the NDCXII reference case

agates at cs0 [23]. Note that the SSRW can be computed
semi-numerically for any EoS of a non-ideal gas [28] and
has been validated by MD simulations [18].

As an example of a numerical simulation of expanding
flows, Figure 1 shows a hydrodynamic calculation with
the code DPC using an EoS based on Maxwell Construc-
tion [22]. Here the liquid and gas are assumed in equilib-
rium, which is not kinetically justified (see Section IV.B),
and the outflow velocity is about 8km/s after 10ns.

FIG. 1: Hydrodynamic calculation with DPC code of NDCX
II reference case, from [23]. A 3.5µm-thick Al foil is heated
within 1ns with an ion beam and subsequently cools down
during adiabatic expansion
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In the following we will assume a flow with linear speed
profile and outflow velocity v0 = 3cs0, but it is worth
remarking that this is quite simplistic. In particular,
several numerical works [21, 23, 28] have reported the
occurrence of ”plateaus”, i.e. zones of nearly constant
density, related to the fluid zones entering into the two-
phase regime.

When mapping the calculation of Fig. 1 onto the corre-
sponding phase diagram, one sees that the material first
melts, and then expands and crosses the liquid binodal,
thus undergoing fragmentation, which we call the subcrit-
ical case. If the material was initially heated to higher
temperatures, it would instead expand first as a super-
critical fluid and pass the critical point from above, thus
reaching the two-phase region at lower densities, when
crossing the gas binodal. Nucleation of small droplets
can then occur. We call it the supercritical case.

Figure 2 represents the two cases and the various ex-
perimental situations that they involve. On Fig. 2.a, we
show the Van der Waals phase diagram for Aluminum
that we use in the following, and a schematical repre-
sentation of the sub- and supercritical cases of two-phase
expansion (arrow 1 and 2). On Fig. 2.b, reproduced from
[17], one sees the non-uniform particle distribution in a
2D MD simulation of laser ablation. One can distinguish
the different regimes from unablated dense phase (I) to
dense material undergoing cavitation and fragmentation
(II), mixture of fagmented material and vaporized ma-
terial having recondensed (III) and fully atomized gas
(IV). In our classification, zone II is a two-phase flow in
the subcritical case, zone III is a mixture of sub- and su-
percritical cases, and zone IV is an expanding gas that is
likely to reach the two-phase boundary in the supercriti-
cal case. The four stages of the MD evolution are placed
qualitatively on Fig. 2.a.
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FIG. 2: a) Phase diagram of the Van der Waals EoS for Al (see
Section III) showing the liquid and gas binodals (solid lines),
and a schematic representation of the sub- (arrow 1) and su-
percritical (arrow 2) cases of two-phase expansion. b) 2D MD
simulation of laser ablation with inhomogeneous initial tem-
perature, from [17], showing material in various situations of
two-phase expansion, which we also locate qualitatively on
Fig. 2.a (roman numbers).

B. Initial droplet size

Both cases lead to droplets formation. In order to ini-
tialize the kinetic model that we present further, it is
necessary to know the initial droplet size at the onset of
the two-phase regime.

In the subcritical case, the overstretched liquid starts
cavitating (see Fig. 2.b, zone II), which we call the bubbles
regime and then the bubbles percolate until the liquid
phase is not continuous anymore (see Fig. 2.b, zone III),
which we call the droplets regime. We assume that the
droplets regime starts when the gas and liquid volumes
are equal: Vg = Vl, which is justified by an argument of
surface energy minimization.

The mean droplet’s size in a fragmentation scenario
can be obtained by considering a balance between the
disruptive inertial forces and the restoring surface tension
[14]. The model proposed initially by Grady [29] has
been abundantly validated by MD calculations [14, 17,
20] in 2D and 3D, and is in very good agreement with
measurements on He jets [30]. We note that the scaling
of the mean radius R of the drop can be obtained by just
setting to unity the Weber number We ≡ ρRv2/σ [31],
where σ is the surface tension ρ the liquid mass density,
and v = ηR the typical velocity difference across a piece
of fluid of size R. We is the ratio of the surface energy to
the inertial energy. In any dimension this criterion yields

We ∼ 1 ⇒ R ∼
( σ

ρη2

) 1
3 (1)

Several values of order 1 have been proposed for the pref-
actor in this scaling law, either from analytical estimates
(prefactor 151/3 = 2.47 in [24]), or from fits to MD sim-
ulation results. In [15], it was shown that both 3D MD
results with a homogeneous strain rate η and data from
helium free jets experiments from [30] could be fitted to
Eq. 1 with the same prefactor, thus validating this law
over more than 3 orders of magnitude in cluster size (the
experimental fragments cover larger sizes than the nu-
merical ones).

Concerning the size distribution of drops resulting from
fragmentation, MD simulations have shown clearly that
it is essentially exponential [15, 20], which is consistent
with simple models of entropy maximization [14].

By contrast, it is not so clear how to describe the initial
situation in the supercritical case. This task requires one
to choose a model for nucleation, or to input results from
MD calculations. Nucleation of clusters from a supersat-
urated vapor is the situation of nucleation whose kinetics
is the easiest to model theoretically [32], but still choices
have to be made [13], that are beyond the scope of this
paper. Any model for nucleation will depend crucially
on surface tension, so we make the remark here that es-
timating the surface tension for small droplets is delicate
because of its enhancement at small sizes [33, 34].
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III. MODEL

A. Van der Waals fluid model

With only two parameters, the Van der Waals (VdW)
Equation of State (EoS) is the simplest EoS describing
the coexistence of a liquid and a gas phase, and has al-
ready been used for theoretical studies of dynamic two-
phase processes [35, 36]. All the thermodynamic func-
tions can be derived from the expression for the mean-
field potential energy per particle in such fluid: U = +∞
if n > 1/b and U = −an if n < 1/b, where n is the par-
ticle density, b stands for the incompressible volume of
the particles, and a represents the mean-field attractive
energy between them.

The bulk VdW energy of N particles at temperature
T is E = N(cvT − an). It can be shown that the spe-
cific heat cv is independent of n and can only depend on
T [37], so that one has to choose necessarily cv = 3

2kB,
where kB is the Boltzmann constant, if one wants the
EoS to match the perfect monoatomic gas in the dilute
limit. Writing the partition function, one obtains the
other thermodynamic functions. In particular, the pres-
sure is P = kBT/(v − b) − a/v2 where v = 1/n is the
volume per particle. This expression implies that the iso-
bars (resp. isotherms) are a cubic relationship between
T and v (resp. P and v). Hence, below a certain crit-
ical temperature Tc, an unstable zone of negative com-
pressibility appears in the phase diagram, limited by the
two spinodals. We obtain the equilibrium density of the
two stable phases that can coexist at certain (P, T ) by
numerically performing the Maxwell construction, which
consists in solving Pl = Pg (i) and µl = µg (ii) simulta-
neously, where µ denotes the chemical potential and the
subscripts l and g stand for liquid and gas, all through-
out this paper. (ii) is equivalent to

∫ g
l vdP = 0 and thus∫ g

l P (v)dv = Pl,g(vg − vl) [37].
Introducing the reduced temperature θ = kBT/l0,

where l0 = a/b is the latent heat at T = 0, and two
dimensionless parameters that are small in the low tem-
perature limit: vg = b/γ and vl = b(1 + δ), equations (i)
and (ii) become:

θ

γ
− 1

(1 + γ)2
=

θ
1
δ − 1

− δ2 (2)

θln(1
δ − 1)
γ

+ δ− 1
1 + γ

= (
θ

1
δ − 1

− δ2)(
1
δ
− (1 + γ)) (3)

It is worth remarking that Tc = 8a/27b, so θc = 8/27 &
0.3, and therefore one expects that calculations in the
”low temperature limit” (θ ' 1) should be a good ap-
proximation as soon as one is not considering the vicinity
of the critical point.

Figure 3 gathers the thermodynamic functions of our
VdW model for Aluminum. Fig. 3.a shows the numerical
result of the dimensionless Maxwell construction where
the VdW parameters a = 9.1 × 10−35erg.cm3 and b =
1.85 × 10−23cm3 have been adjusted to fit this material.
For that, we impose that the VdW liquid density matches
the aluminum liquid density nl(Tm) = 5.26 × 1022cm−3

at the melting point Tm = 933.5K (= 0.026l0) [38] and
that the VdW latent heat (shown on Fig. 3.b)

l = a(nl − ng) + Pl,g

( 1
nl

− 1
ng

)
(4)

coincides with the experimental value l(Tb) = 4.88 ×
10−12erg/atom for Aluminum at the boiling temperature
Tb = 2792K (= 0.078l0) [38]. Note that the critical pa-
rameters that we obtain in this way are consistent with
the best estimates to date, although not very precisely
[51].
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FIG. 3: Van der Waals thermodynamic functions for Alu-
minum, in VdW units. The dots represent experimental data
and the critical point obtained from the fits. (a) Liquid and
gas densities (solid lines) with first (dashed) and second or-
der (dotted) low T approximations. (b) Latent heat (solid)
decomposed in the first (dashed) and second (dotted) term of
Eq. 4. (c) Bulk energies per particle, with first order low T
approximations of Eq. 7 (dashed). (d) Surface tension (Eq. 8).

On Fig. 3.a are also displayed the simple, useful ap-
proximations for nl and ng at lowest orders in θ that one
obtains directly from Eq. 2 and 3:

nl &
1
b
(1 − θ − θ2) (5)

ng & 1
bθ

exp(− 1
θ(1 + θ)

) (6)

Note that Eq. 6 is, at lowest order in θ, equivalent to the
Clausius-Clapeyron formula applied to a perfect gas. We
also show on Fig 3.c the approximations at first order in
θ for the liquid and gas bulk energies per particle

eg & 3
2
kBT ; el &

5
2
kBT − a

b
(7)
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For the surface tension, Van der Waals himself had al-
ready proposed to model it using density gradients [36],
but we have chosen to use a simple formula that is uni-
versally verified in simple fluids [39]

σ ∝ (1 + T/Tc)1+r with r = 0.27 (8)

To model Aluminum, we fit this formula to the exper-
imental value σ(Tm) = 1050erg/cm2 [40], as shown on
Fig. 3.d. Note that in the following, the total liquid en-
ergy in the cell is El = Nlel +σSl, where Sl is the surface
area of the droplet.

B. Kinetic equations

Our goal is to compute the evolution of droplets in
cells. In this paper we limit ourselves to the case of one
droplet in one lagrangian cell undergoing adiabatic ex-
pansion. It is a closed system out of equlibrium, and its
complete description requires the determination of the
four variables Nl, nl, Tl, Tg. To compute their evolution,
we need four rate equations: a liquid-gas particle ex-
change rate, an energy exchange rate, a total energy loss
rate (work to the outside), and an internal equilibrium
condition to determine the liquid density. As shown on
Fig. 4.a, the particle fluxes between liquid and gas are di-
vided between evaporating, condensing, and condensing
but not-sticking particles.

The volume expansion V (t) shall later be prescribed by
a global hydrodynamic code. For our study, we assume
cylindrical symmetry and we use a simple model behavior
[15, 16]

V (t) = V0(1 + ηzt)(1 + ηrt)2 (9)

where ηz and ηr are the axial and radial strain rates cor-
responding to the beam direction and the target plane
respectively. The particle fluxes between liquid and gas
are computed using the standard Hertz-Knudsen formu-
las [41, 42]

Φcond = ng

√
kBTg

2πm
; Φvap = n∗

g(Tl, R)
√

kBTl

2πm
(10)

where n∗
g(Tl, R) is the equilibrium gas density for a drop

at temperature Tl and of radius R. To estimate n∗
g, we

use the Kelvin equation, which describes the increase of
the equilibrium vapor pressure surrounding a drop due
to surface tension

n∗
g(R) = n∗

g(∞) exp
( 2σ
kBTnlR

)
(11)

Kelvin equation is approximate because its derivation as-
sumes a perfect gas. Also, we use a constant value for σ,
thus neglecting its increase at small radii [33, 34]. Still,
this approach is probably not too bad after all [43], and
satisfactory enough for our qualitative purpose.
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FIG. 4: The ”drop-in-cell” kinetic model. a) Sketch of the ki-
netic fluxes. b) Sticking coefficient β calculated with formula
from [44] and our aluminum VdW parameters.

Considering mass conservation, and combining the two
fluxes of Eq. 10, the particle exchange rate equations are:

d(Nl + Ng)
dt

= 0 ;
dNl

dt
= β(−Φvap + Φcond)Sl (12)

where Sl is the surface area of the drop and 0 < β < 1
the sticking coefficient that is usually assumed of order
0.5. A recent study [44] has proposed a simple expression
for β that is in good agreement with MD calculations for
several simple fluids. This expression depends only on
the ratio of the molecular volumes in the liquid and vapor
phase: β = (1 − (vl/vg)1/3) exp(− 1

2
1

(vl/vg)1/3−1
) that we

plot for our VdW model for Al on Fig. 4.b.
Concerning the energy fluxes, the first equation comes

from the assumption of adiabatic expansion of the cell:

d(El + Eg)
dt

= −Pg
dV

dt
(13)

In this global energy loss rate we have neglected three
terms that could be added in a near future. The first
one is heat conduction between cells. This term may
play a role, but it cannot be very important as we are
considering a supersonic flow (see Section I). The second
neglected term is radiation. Radiation becomes indeed
the dominant cooling mechanism at long times, as we
will see later, but it is negligible for the initial dynamics,
so the approximation is reasonable, because our purpose
in this paper is to study the expansion in a time range
where the two phases are interacting and the system is
not just a collection of isolated clusters flying in vacuum.
The third neglected term is thermionic emission. One ex-
pects electrons to be thermally emitted from the droplet,
taking away some energy. Non-neutral effects are totally
absent from our model, but we expect that the associated
cooling rates will be small compared to the adiabatic and
evaporative cooling rates [52].

The energy exchange rate between the liquid and the
gas has contributions from the three fluxes of Fig. 4.a.
The contribution of the colliding but non-sticking parti-
cles can be described with a flux proportional to the tem-
perature difference Tg − Tl, with a relaxation coeficient
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0 < α < 1 (see e.g. [45] for more discussion). For the con-
densing gas particles, we make the simplest assumption,
that each of them brings to the liquid the average gas
energy eg = cvTg − ang. For the evaporating particles,
we assume that the energy they individually take away
from the liquid depends only on the liquid state. We note
it e∗g = cvTl − an∗

g(Tl, R) because it corresponds to the
energy of a virtual gas particle that would be in equilib-
rium with the drop of radius R at temperature Tl. This
justification is totally analogous to the Hertz-Knudsen
derivation of the mass evaporation rate of Eq. 12. We
finally get the exchange rate

dEl

dt
= [β(−e∗gΦvap + egΦcond)

+ (1 − β)αcv(Tg − Tl)Φcond)] Sl (14)

Our set of kinetic equations is fully consistent in the
sense that at equilibrium both mass and energy fluxes
between the drop and the gas are in balance. Note that
the energy that an evaporating particle needs to take
from the liquid is e∗g−el = −a(n∗

g−nl), which corresponds
exactly to the latent heat (Eq. 4), without the second
(work) term, which is expected since the latent heat is an
enthalpy and we are here dealing with energy exchanges
at constant volume.

To our knowledge, our set of rate equations is an orig-
inal model for the exchanges between a drop and its
vapour. Other systems of kinetic equations can be found
for analogous systems (see e.g. [46, 47]), but they do not
correspond to the purely kinetic regime that we are con-
sidering, because they deal with larger drops (R > 1µm)
and longer time scales, more relevant to the fields of com-
bustion or atmospheric sciences, so they need to combine
the kinetic approach with the more classic hydrodynamic
theories of droplet evaporation [48].

Our model for WDM situations is simpler, because we
do not distinguish in the gas a Knudsen layer vs a hy-
drodynamic layer. We assume that our computing cells
are small enough that the gas density inside them is con-
stant. The variations over the whole flow shall instead
be treated by the global hydrodynamic code that deter-
mines the expansion of each kinetic cell. The kinetic and
phase change processes in our description are driven by
the hydrodynamic expansion, therefore, the validity con-
dition of our model is that the initial cell size should be
much smaller than the initial sample dimensions:

L0 ' δr, δz (15)

so that the global hydrodynamic treatment is correct,
with gradients properly resolved. This is verified in the
standard situations we consider, but can break down if
the initial droplet size is too big compared to the sample
size.

C. Equilibrium condition between droplet and gas

In order to get a closed system of equations for parti-
cle and energy fluxes, we still need one assumption. Our
model is a priori out of thermal equilibrium (Tl *= Tg), so
the density of the liquid is not determined yet. It seems
reasonable to assume pressure equilibrium between the
drop and the gas, because, given a certain gas tempera-
ture and density, it requires only a few collisions for the
drop to ”experience” the gas pressure, and adjusting the
liquid pressure to it requires only a small density change,
because the liquid has a very low compressibility.

Due to the drop curvature, the pressure equilibrium
condition is the Laplace equation

Pl − Pg =
2σ
R

(16)

An exact numerical implementation of Eq. 16 is difficult,
because it requires to solve a non-linear system at each
timestep in order to determine the liquid density given a
certain set of values {V, Nl, Ng, El, Eg}.

To simplify the condition, one can approximate the
liquid density by the equilibrium value n∗

l (∞) for a flat
interface (R → ∞), but this is wrong for two reasons.
First, because due to the fast expansion, the gas pres-
sure is lower than the corresponding saturation value,
and second, because of the Laplace compression term of
Eq. 16. Running our model, we have checked that this
raw approximation leads to important inaccuracies in the
calculation of the pressure, especially at low tempera-
tures where the Laplace term becomes dominant. Still
these errors do not cause important discrepancies in the
global description of the drop evolution, due again to the
low compressibility of the liquid.

For more accuracy, we have chosen to compute the
liquid density in perturbation from the flat equilibrium
value

nl = n∗
l (∞)(1 +

∆P

Kl(Tl)
) (17)

where Kl(Tl) = nl(∂P/∂nl)Tl is the isothermal bulk
modulus of the liquid that we compute directly from the
VdW EoS, and ∆P = 2σ/R− (Pl(n∗

l (∞), Tl)−Pg) is the
pressure correction that we compute using Eq. 16. As we
show in the next section, this perturbative approach of
the pressure equilibrium condition is very satisfactory.

With Eq. 9-17, we have a complete model for the evo-
lution of a droplet in an adiabatic expanding lagrangian
cell. In the following, we use this model to study the
different regimes of two-phase expansion.
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IV. RESULTS

A. NDCX II reference case (subcritical case)

The reference case envisioned as an upcoming experi-
ment on the NDCX II machine at LBNL consists in heat-
ing an aluminum foil of thickness δz = 3.5µm with a short
pulse of ions (see Table I). The beam profile is taken as a
uniform disk of diameter δr = 1mm. Initial temperatures
up to 1eV are predicted for the expected beam fluences
[23].

On Figure 5, we present the numerical output of the
model for a cell containing a droplet and gas initially at
equilibrium at T0 = 8000K with Vl = Vg = V/2, because
this corresponds to the onset of the ”droplets regime”
(see section II). As we mentioned previously, we make
the crude assumption of a flow with linear speed profile
and outward expanding speed v0 = 3cs0 & 5.0km/s on
both sides z > 0 and z < 0, where the sound speed cs0

is estimated roughly as the thermal velocity vth(T0) =√
kBT0/m. Then, the strain rates in Eq. 9 are simply

ηz = 6cs0/δz and ηr = 6cs0/δr. We display a full 3D case
(solid lines) and a 1D case (dashed) where ηr = 0. Here
thydro = 1/ηz & 0.37ns. The time t3D = 1/ηr & 107ns
can be considered as the time of the onset of the 3D
regime of expansion. The calculation is carried out with
α = β = 0.5 and we use the variable u = ln(t) to span
a wide temporal range. The result is displayed up to
t = 100µs because at this time the front has travelled
over about 5cm, which is comparable with the size of
an experiment. The initial droplet size R0 = 25.4nm is
estimated using Eq. 1 and is consistent with observations
for similar initial temperatures [13]. This size is the mean
size of the liquid fragments so we are considering the
evolution of a typical droplet.

At early times (t < 10ns), a fraction of the liquid is
evaporated (Fig. 5.a). But this process saturates at a
time tmin, after which the liquid fraction starts growing
slowly. Then, in the purely 1D case (dashed lines), the
droplet continues to grow steadily. In the more realis-
tic situation however (solid lines), the droplet evaporates
again when the 3D regime sets in, at times t > t3D.

On Fig. 5.b, one sees that, almost instantaneously after
heating (t < 100ps), a temperature difference ∆T = Tl −
Tg is established between the gas and the droplet, and
remains roughly constant throughout the expansion in
the 1D case. On the contrary, in the 3D case, Tg drops
quickly to almost 0 around t3D, whereas Tl decreases
slowly to a value around 1600K. On Fig. 5.d, we see that
in both cases the liquid density remains very close to
the equilibrium value. By contrast, the gas density is
clearly below the binodal in the 1D case, and in the 3D
case it dives deep into non-equilibrium (supersaturated)
conditions.

On Fig. 5.c, we check the pressure equilibrium con-

0.01 1 100 104
0.0
0.5
1.0
1.5
2.0
2.5

t !ns"

N
!106

"

0.01 1 100 104
0

2

4

6

8

t !ns"

T
!103

K
"

0.01 1 100 104
0.0
0.5
1.0
1.5
2.0
2.5

t !ns"

P
!kba

r
"

1016 1018 1020 1022

1

2

5

10

n !cm"3"

T
!103

K
"

b)

d)

Tg
Tl

lg

a)

c)

t3 Dtmin

Nl

Ng

Pl
Pg

thydro t3 Dthydro

FIG. 5: Drop and gas evolution in the NDCX II reference case.
Initially the drop of radius R0 = 25.4nm and the gas have
equal volume and are in equilibrium at T0 = 8000K. Liquid
is in blue, gas in purple. Time evolution of (a) the particle
numbers and (b) the temperatures, for a 1D (dashed) or a full
3D expansion (solid). (c) Pressure evolution in the 3D case.
The pressure difference computed (dashed) and expected from
Eq. 16 (dotted) are indistinguishable. d) Trajectories in the
phase diagram for the 1D and 3D cases

dition in the 3D expansion case. One cannot distin-
guish the pressure difference in the computed evolution
(dashed) that uses Eq. 17 from the theoretical value of
Eq. 16 (dotted), as the agreement is better than 2% over
the whole simulation range. The increase of Pl at long
times is due to the Laplace term (Eq. 16).

Clearly, from the NDCX II example, two different
regimes can be identified. The first one, where the tem-
perature difference is small, and remains constant, can be
considered as a quasi-thermalized regime. In this regime
the droplet grows. The second one, where the gas be-
comes much colder than the drop, corresponds to a non-
thermalized regime. in this regime the drop evaporates
again, as if it were in vacuum. We now discuss the various
regimes.

B. Thermalization condition, quasi-thermalized
regime

Let us now find a thermalization condition. In our
equations, the energy is extracted from the system only
by the adiabatic expansion of the gas (Eq. 13) and the
gas quenching is then transmitted to the liquid via the
liquid-gas energy exchange term (Eq. 14). Therefore, we
should compare those two energy fluxes to find the ther-
malization condition.

Let us assume a small temperature difference ∆T/T '
1, so that we are in the quasi-thermalized regime of ex-
pansion, as in the 1D case of Fig. 5. From Fig. 5.a, one
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sees that Nl and Ng are almost stationary if Tl & Tg.
Hence, let us make the approximation Φvap = Φcond

(more precisely, |Φvap − Φcond| ' Φcond).
The ratio between the two energy fluxes can be es-

timated as follows. Let us consider a cell containing
fixed numbers Nl and Ng of liquid and vapor atoms, and
let x = Nl/Ntot be the liquid fraction in the cell. In
the low T limit, a small energy change can be written
dEg = Ng

3
2kBdTg for the gas and dEl = Ng

5
2kBdTl for

the liquid, according to Eq. 7. Noting dEtot = dEl +dEg

the total energy lost by the cell, we define ξ = dEl/dEtot.
Requiring stationary ∆T (i.e. dTl = dTg), we obtain
ξ = 5x/(2x + 3).

In the low T limit, the adiabatic cooling of the gas
implies: dEtot/dt = −PgdV/dt = −ngkBTgη̃V0, where
we define the volume strain rate η̃ = d(V/V0)/dt. Note
that, in the 1D expansion regime, η̃ = ηz, whereas in
the 3D expansion regime, for t , t3D, η̃ & 3ηzη2

r t2 and
diverges. The power transferred from the liquid to the
gas is: dEl/dt = ng

√
kBTg/2πmSχcv∆T , where χ =

β + (1 − β)α. To get this expression we have computed
the contributions from the three terms in Eq. 14 and
used Φvap = Φcond. Expressing S = 4πR2 and V0 =
2 × 4

3πR3
0, the balance between the fluxes dEl = ξ dEtot

finally yields

∆T

T
=

ξη̃

χ

4
√

2π
9

R3
0

vth(Tg)R2
(18)

where we note vth(Tg) =
√

kBTg/m the thermal speed in
the gas. With the approximation R0 & R and neglecting
the prefactors of order unity, we see that ∆T/T is simply
proportional to the drop radius and the volume strain
rate

∆T

T
∼ η̃ R0

vth(Tg)
(19)
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FIG. 6: Test of the thermalization formula Eq. 18. (a) Time
evolution of the ratio Λ = (∆T/T )theo/(∆T/T ) of the tem-
perature difference computed with Eq. 18 to the numerical
model in the NDCXII reference case, in purely 1D (dashed)
and full 3D (solid) expansion. (b) Λ in the 1D expansion at
t1 = 1ns (filled symbols) and at t2 = 10µs (hollow symbols)
with β =0, 0.2, 0.4, 1 (circles), α =0, 0.2, 0.4, 1 (up triangles),
δz =1, 2, 4, 8µm (squares) and R0 =5, 10, 20, 40nm (down
triangles).

On Figure 6 we check the validity of Eq. 18, comput-
ing the ratio Λ = (∆T/T )theo/(∆T/T ) of the theoretical
temperature difference (Eq. 18) to the result of the full
numerical calculation. To evaluate Eq. 18 we take the
values of η̃, R, Tg and x from the result of the numer-
ical simulation. On Fig. 6.a, we show the evolution of
the ratio Λ in the NDCXII reference case (same calcula-
tion as Fig. 5). In the full 3D expansion case (solid line),
the prediction becomes bad (error larger than 100%) at
t & t3D, which is expected since the volume expansion
rate η̃ diverges in 3D. In the purely 1D expansion, after
the first ns, one sees that Eq. 18 is accurate within 20%.
More precisely, the error has the same sign as the deriva-
tive dNl/dt and vanishes when the drop is stationary, at
t = tmin, which is expected since Eq. 18 is obtained with
the assumption dNl/dt = 0.

On Fig. 6.b, we show the ratio Λ at t1 = 1ns and at
t2 = 1µs for the same parameters, but varying one by
one those that are relevant to Eq. 18: β, α, δz (in order
to vary η) and R0. The analytic formula overestimates
(resp. underestimates) ∆T/T in all cases at t1 (resp. t2),
and for both cases the error is larger when the expected
(∆T/T )theo is larger, which is natural since Eq. 18 holds
in the limit of small ∆T/T . Interestingly, the point β = 0
is separate from the others at both times, and is closer to
1, which is not surprizing since β = 0 means no particle
exchange, and this again confirms that the main source
of inaccuracy of Eq. 18 is a non-zero value of dNl/dt. The
prediction could thus be refined if this effect was taken
into account, for example using the analytical results of
the next section. At early times, one can see also that the
error is larger for drops of radii smaller than 5nm. This
effect is switched off if we set σ = 0, confirming that it is
caused by surface effects.

It is also possible to rewrite Eq. 19 in terms of the ini-
tial conditions: considering η ∼ cs0/δz, one gets the very
simple scaling law: ∆T/T ∼ R0/δz This last expression
is only valid in the case of a 1D linear expansion where η̃
is constant. In this case, one sees using Eq. 1 that ∆T/T
is expected to decrease slowly when the initial sample
size increases

R0 ∝ η−
2
3 ⇒ ∆T

T
∝ η

1
3 ∝ δz−

1
3 (20)

For larger samples, the thermalization will be better even
though the droplets are bigger. This justifies again that
in the limit of large samples and slow expansions, an
equilibrium hydrodynamic description becomes valid.

In summary, Eq. 18 is expected to be always a good
estimate in the quasi-thermalized regime, and Eq. 19 can
be considered as a universal criterion to delimit the quasi-
thermalized regime.
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C. Fully thermalized regime

In the previous section we could distinguish the
regimes of quasi-thermalized versus non-thermalized ex-
pansion. From Eq. 18 it is clear that the quasi-
thermalized regime will become quickly invalid after t3D,
because the volume strain rate η̃ diverges. Nonetheless,
in the early times of expansion, or if one is interested in
systems of large radial extent, it is worth studying the
limiting case of a fully thermalized flow.

In this perspective, let us assume Tl = Tg = T . Again,
we look at the low T regime, which becomes valid very
early in the expansion process. Using the first order ap-
proximations nl & (1−θ)/b and ng & 0 (Eq. 5 and 6) and
neglecting the surface energy term, we write the total en-
ergy Etot = Ntot(cvT − x(1 − θ)a/b), where x = Nl/Ntot

is still the liquid fraction in the cell.
The total energy change dEtot = −PgdV becomes, at

first order in θ: −(1−x) θ dV
V = (3

2 +x) dθ−dx. Noting
that dV & dVg, we convert θ d(ln(V )) = dθ− dθ/θ using
the low T approximation Eq. 6, and find finally

dx = (
5
2
− 1 − x

θ
) dθ (21)

It is easy to push the approximation to higher orders in θ,
but Eq. 21 already allows one to get good insight into the
evolution of the droplet. One sees that the droplet will
be stationary at a temperature satisfying θmin = 2

5 (1 −
x) corresponding to the time tmin already mentioned, it
will evaporate before this point, for temperatures θ >
θmin, and grow after it, for θ < θmin. This sequence
is in agreement with the NDCX II reference case shown
on Fig. 5. Note that, at long times, and independently
from the EoS, droplets will always grow in a thermalized
situation. This is due to the fact that adiabatic expansion
of a perfect gas is an algebraic trajectory in phase-space
(T ∝ ρ2/3), whereas Clausius-Clapeyron law predicts an
exponential curve for the gas binodal, meaning that the
gas in a two-phase expanding cell will always tend to
saturate and make the liquid fraction grow.

On Figure 7, we show the exact numerical calculation
of the thermalized evolution of a droplet whose initial
radius is R0 = 25nm and for initial temperatures rang-
ing from 7000 to 10000K. In the thermalized case, the
time evolution is irrelevant, that is why on Fig. 7.a and
b the temperature and liquid fraction are plotted as a
function of the volume expansion ratio V/V0. An expan-
sion remaining in the thermalized regime over 10 orders
of magnitude volume expansion is unrealistic in the case
of NDCX II, but for generality it is interesting to study
this limiting trend.

On Fig. 7.c, the numerical liquid fraction versus tem-
perature is compared to the solution of Eq. 21, starting
when the volume has expanded by one order of mag-
nitude. The analytic approximation is accurate within
20%. This shows that Eq. 21 can be used to make good

a) b)

c)

2 4 6 8 10
0.6

0.7

0.8

0.9

T !103 K"

x

0 2 4 6 8 10
0.6

0.7

0.8

0.9

Log$V#V0%

x

T0=7000K
8000K

9000K
10000K

0 2 4 6 8 10
0

2

4

6

8

10

Log$V#V0%

T
!103

K
"

FIG. 7: Thermalized evolution for a droplet of initial radius
R0 = 25nm and initial temperatures T0 = 7000 to 10000K
(solid lines). Temperature (a) and liquid fraction (b) evolu-
tion versus the cell expansion. (c) Full numerical calculation
compared to solution of Eq. 21 (dashed) started at V/V0 = 10.

estimates of the asymptotic growth of the liquid fraction
in the thermalized case, which can be, for example in the
case T0 = 9000K, of a bit more than 10%.

This growth of the liquid fraction in the thermalized
regime is a rigorous upper bound for droplet growth. In
the opposite regime, one can get the reciprocal upper
bound for droplet evaporation.

D. Non-thermalized regime: evaporation in vacuum

If the gas expands too fast for thermalization to occur,
one expects the drop to evaporate as if it were in vacuum.
The corresponding limit consists in assuming Φcond = 0.
Obviously, in this case the droplet can only lose particles.
Moreover, the evaporation of the drop is maximal in this
regime, because, if there was thermalization via collisions
with a gas, colder than the drop, it would be a way for
the drop to lose energy without losing particles. Also,
because the vapor pressure decreases exponentially with
temperature, one expects the evaporation in vacuum to
slow down fast. But, independently from the kinetics,
it is clear that there must be some upper bound to the
evaporation of a drop. Indeed, as every evaporating par-
ticle takes away energy from the drop (the latent heat),
the drop gets colder and colder, until the evaporation
is ”frozen”, a strict limit being that T cannot become
negative.

Let us find analytic expressions for the maximal evap-
oration of a drop whose energy is noted El. Consider-
ing the evaporating particles and using Eq. 14, the en-
ergy loss can be written dEl = e∗gdNl. On the other
hand, considering the liquid, and neglecting the surface
energy term, one can write dEl = eldNl+Nl(∂el/∂Tl)dTl.
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Equating those two expressions, one finds

dNl

Nl
=

(cv − a(∂nl/∂Tl))
a(nl − ng)

dTl (22)

Within our VdW model, using the development of nl

at first order in θ (Eq. 5), one can integrate Eq. 22 from
initial T0 and Nl0, yielding at the final Tl the remaining
fraction

Nl

Nl0
= exp [−5

2
(θ0 − θl) −

13
4

(θ2
0 − θ2

l )] (23)
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.

Figure 8 shows the exact numerical result for the evap-
oration in vacuum of a droplet whose initial radius is
25nm, and initial temperatures ranging from 3000 to
9000K. The volume expansion is not relevant here, so
the variables are displayed as a function of t only. On
Fig. 8.a and 8.b, one sees that for all initial temperatures,
the number evaporation and cooling curves of the drop
follow a same asymptotic behavior, which is increasingly
slow at long times. On Fig. 8.b, the numerical integra-
tion of Eq. 22 is shown for each T0 (dashed lines), with
the final Tl taken from the full numerical solution. The
agreement with the final evaporation ratio is excellent,
showing that surface effects play a negligible role. We
have checked that surface effects cause an overestimation
of the maximal evaporation of less than 10% even for
droplets of initial radius 1nm. The approximated Eq. 23
is also displayed for each T0 (dotted lines), taking here
also the final Tl from the full numerical run. One sees
that it predicts the good limit for evaporation within 5%
for initial temperatures up to 7000K. This is very satis-
factory because the non-thermalized regime is expected
to be valid only in the late times of expansion so the first
order low T approximations should be very accurate.

Let us now discuss the onset of the radiative cooling
regime. At long times and low temperatures, the particle
evaporation and the evaporative cooling rate decrease ex-
ponentially (Eq. 6), whereas the radiative cooling rate is
algebraic (∝ T 4). Therefore thermal radiation becomes

the dominant cooling mechanism at long times. Within
our model it is not difficult to express the temperature
Trad below which radiative cooling becomes dominant
over evaporative cooling [53]. Using our VdW parame-
ters for Aluminum, and assuming an emissivity ε = 0.2,
we find Trad & 1740K. For Si nanoparticles, the same
estimate yields Trad & 2190K. This is consistent with
the measurements reported in [12] where the cooling of
Si nanoparticles formed by laser ablation is found to be
well explained by radiation at expansion times 5−150µs
and for temperatures below 2000K, although the evapo-
rative cooling rates that we obtain within our model are
significantly larger than the estimates they report. As
an example, for Si at 2000K, our crude model predicts a
radiative cooling rate of &28K/µs, while the evaporative
coling rate in vacuum is still &6.5K/µs. Note however
that the rate we compute is a strict upper bound.

E. Supercritical case: nucleation and growth of
liquid droplets

The last case to consider is the supercritical case, where
the material expands first as a supercritical fluid, and
enters the two-phase region of the phase diagram crossing
the gas binodal, as a supersaturated gas. In this case
nucleation of drops may occur.

We do not propose a model for nucleation but we note
that it has been reported [13] that supersaturation of the
vapor doesn’t reach high values and that above a cer-
tain threshold value nucleation is very sudden, due to
the exponential dependence of the nucleation frequency
on the supersaturation ratio [32]. Then, our model is ex-
pected to describe correctly the subsequent evolution of
the clusters. In particular, we expect that thermalization
will depend on the values of the drop radius and the vol-
ume strain rate and that Eq. 18 will be a good estimate
in the quasi-thermalized regime. If the clusters are in
thermal equilibrium with the gas, Eq. 21 is expected to
be valid as well.

Note that nucleation may also happen in a subcriti-
cal expansion scenario, if the gas becomes very super-
saturated at long times, as can be seen for the refer-
ence case on Fig. 5.d. In this situation, close to the
non-thermalized limit, condensation onto the existing
droplets is too slow, and nucleation of new droplets may
thus happen even if there are already liquid clusters in
the plume.

V. CONCLUSION

We have studied droplet evolution and thermalization
conditions with a simple kinetic model based on the Van
der Waals Equation of State and a consistent set of rate
equations for mass and energy exchanges. Our model
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bridges the gap between the molecular and equilibrium
hydrodynamic approaches that have mainly been used so
far.

The VdW EoS is a simple way to model any material
without much detail, but is good enough to explore the
two-phase physics relevant to our problem. Although
some of our analytic results are derived using specifically
the VdW EoS, our kinetic model and the main results
are applicable to any EoS.

The main output of our study is to identify the dif-
ferent regimes of two-phase expansion. On one side,
the quasi-thermalized case and its limit, the fully-
thermalized case, on the other side, the non-thermalized
case. We propose a criterium to distinguish the two sit-
uations.

The local thermalization condition (Eq. 18) depends
on the drop radius R, the volume expansion rate η̃, the
gas temperature Tg, the liquid fraction x, and the ki-
netic parameters α and β, but it can also be traced back
to the initial conditions: sample thickness δz and initial
temperature T0 (Eq. 20). Eq. 19 is a simpler alternative
to Eq. 18 that requires only a knowledge of the initial
drop radius R0, η̃ and Tg.

Due to the crossover around t3D from 1D expansion at
early times to 3D expansion at long times, the expansion
is expected to take place in quasi-thermalized conditions
in the early times, at least in the NDCXII reference case
and for similar parameters, but at long times the non-
thermalized regime is almost inevitable. Note that Eq. 18
shows that this is only a dimensional effect, because it is
driven only by the divergence of η̃ in 3D.

In the quasi-thermalized case, our study shows that
the relative temperature difference (Tl − Tg)/Tl remains
almost constant throughout the expansion. Eq. 18 is de-
rived assuming no net particle exchange, so only kinetic
energy terms (but no latent heat) are involved. This
makes it suitable for generalization to other EoSs, al-
though a precise evaluation of the formula, as we have
done, requires usage of the precise EoS. The predictions
of Eq. 18 could also be tested with MD calculations and
experimental measurements.

In the fully thermalized case, we have derived an
approximate analytic expression for droplet evolution
(Eq. 21), showing that drops can grow (moderately) if
thermalization is maintained at long times. Eq. 21 is
specific to the VdW EoS, but the general behavior is
universally valid.

In the opposite scenario of a fully non-thermalized flow,
Eq. 22 gives a strict upper bound for the evaporated frac-
tion at a given final temperature, and is valid for any
EoS.

For the moment, the model we have presented is local,
but in the future it could become part of a larger hydro-
dynamic code that will treat many lagrangian two-phase
cells with drops and gas inside them. The extension of
our model to the case of several drops in one cell can be

done easily. It could also become necessary to include
other effects that are not two-phase phenomena and that
we have left aside, such as radiation, thermal conduction
between cells, and thermionic emission.

A global comprehensive code will also require addi-
tional modules to compute the initial conditions. In the
subcritical case, a single phase-hydrodynamic code and
model for fragmentation will be needed to detemine the
droplets mean size and distribution at each location. In
the supercritical case, a model for nucleation is required,
after which our kinetic model can be used to compute
the condensation and the evolution of the clusters. In
any situation, the thermalization condition (Eq. 18 or
19) can be used as a test to determine if the two-phase
computing cell can be treated as an equilibrium cell or if a
non-equilibrium treatment is required. The reason being
of course that an equilibrium (thermalized) description
is much easier to implement.

The second practical use of our model is to make es-
timates in real situations. In particular, the limiting be-
haviors in the thermalized and non-thermalized cases can
be used as upper bounds for the droplets’ evolution. Note
that, in all the cases we have studied, the droplets never
grow or evaporate very much from their initial situation.

Finaly, we have been able to investigate the role of
surface effects in different cases. Surface tension is ex-
pected to play an important role for small drops of radii
R < Rσ = σ/kBTnl. This can be seen from Kelvin equa-
tion or considering the radius at which the surface energy
becomes comparable to the kinetic energy per particle in
the liquid. With our VdW parameters for aluminum,
Rσ increases from 0.8nm at T = 10000K to 64nm at
T = 2000K . Surface effects are thus increasingly impor-
tant in the late stages of expansion, at low temperature
and for the smallest fragments. This is also why a careful
treatment of the supercritical case of in-flight nucleation
is more difficult and remains to be done in order to com-
plement this work.
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